Clinical Overview on Measurable Residual Disease (MRD) in Acute Myeloid Leukemia (AML)

Konstanze Döhner
Department of Internal Medicine III, University Hospital of Ulm, Ulm Germany
DISCLOSURES OF COMMERCIAL SUPPORT

Konstanze Döhner

<table>
<thead>
<tr>
<th>Name of Company</th>
<th>Research support</th>
<th>Employee</th>
<th>Honoraria</th>
<th>Stockholder</th>
<th>Speaker’s Bureau</th>
<th>Advisory Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novartis</td>
<td>√</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Janssen</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Celgene</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daiichi Sankyo</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTI BioPharma</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roche</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Measurable residual disease in AML

• Achievement of complete remission (CR) is the most important prerequisite for cure and long-term survival of patients with acute myeloid leukemia (AML)

• The increasing number of new molecular markers and the development of novel technologies [real-time quantitative polymerase chain reaction (RQ-PCR), multi-color flow cytometry, digital polymerase chain reaction (dPCR), next-generation sequencing (NGS)] allow to determine measurable residual disease (MRD) with high sensitivity

• MRD allows to refine our current definition of morphological CR

• New response category proposed by the 2017 ELN recommendations: “Complete remission without MRD” (CR_{MRD-})
Measurable residual disease in AML

MRD monitoring: clinical implications

• Impact on prognosis
• Early detection of relapse
• Guiding pre-emptive therapy
• Treatment decision making, in particular within the context of post-remission therapy [e.g. allogeneic stem cell transplantation (alloSCT)]
• Monitoring of treatment effects (novel drugs)
• MRD as a surrogate endpoint in clinical trials > rapid approval of novel drugs
Methods for MRD monitoring

Multicolor flow cytometry (MCF)
- Leukemia associated immunophenotype (LAIP)

PCR-based techniques
- Quantitative RT-PCR (RQ-PCR)
- Digital PCR (dPCR), droplet digital PCR (ddPCR)

NGS-based techniques
- Mainly targeted approaches
- Quantification / identification of multiple gene mutations

Sensitivity:
- MCF: 10^{-3} to 10^{-4}
- PCR: 10^{-5} to 10^{-6}
- NGS: 10^{-4}
Molecular markers used for RQ-PCR based MRD monitoring in AML

- So far, MRD monitoring in AML has been restricted to distinct AML subtypes mainly characterized by gene fusions resulting from translocations/inversions or by hot spot mutations

- \(PML/RARA \)
- \(RUNX1/RUNXT1 \)
- \(CBFB/MYH11 \)
- \(BCR/ABL \)
- \((KMT2A/MLLT3) \)
- \(NPM1 \) ~ 50% of all AML

- \(NPM1 \) mutations (~30%)

- \(CBFB/MYH11 \) (~5-8%)
- \(RUNX1/RUNXT1 \) (~5%)
- \(BCR/ABL \) <1%
- \(t(11q23) \) (2%)
- \(KMT2A/MLLT3 \) (2%)
- \(PML/RARA \) (5-8%)
MRD monitoring in clinical AML trials
- important issues -

- Most, if not all studies published so far are retrospective and MRD was not included as a primary or secondary endpoint
- Studies were performed on heterogeneous patient populations with respect to age, treatment, cohort size, or type of material
- MRD monitoring has not been standardized yet; existence of different MRD assays with distinct sensitivities and definitions for „MRD negativity“
- Studies are not comparable with regard to cut-off values / values for transcript levels / copy numbers
- However, in most studies, achievement of MRD-negativity / RQ-PCR-negativity after two cycles of therapy and/or at the end of treatment was significantly associated with outcome
Prognostic impact of MRD in APL

Acute Promyelocytic Leukemia

Prospective study on 406 newly diagnosed adult APL pts (MRC AML15 trial)

Study design for MRD monitoring

- **Material:** paired BM and PB samples used for RQ-PCR analysis
- **Time points:** after each treatment course
 - paired PB and BM samples obtained every 3 months until 36 months of post-consolidation
- **Quality control:** sensitivity of at least 1 in 10^4
- **Transport:** samples were sent by courier / overnight delivery
- **Report:** Clinicians were informed of PCR results
Prognostic impact of MRD in APL

- 6.727 serial BM/PB samples (2.276 paired samples) were analyzed by RQ-PCR
- At the end of treatment, achievement of RQ-PCR-negativity was highly predictive for clinical relapse and relapse-free survival (RFS)
- Persistent PCR positivity and molecular relapse were significantly associated with clinical relapse and RFS
- Pre-emptive therapy with arsenic trioxide in pts with persistent PCR positivity or molecular relapse prevented progression to overt relapse in the majority of the pts

CIR in patients treated with pre-emptive therapy (blue)
Prognostic impact of MRD in Core-binding Factor (CBF) Leukemia

\[t(8;21)(q22;q22.1); \text{inv}(16)(p13.1q22) \]

- MRD-negativity at the end of treatment in PB impacts clinical outcome – French Intergroup CBF-2006 trial. Willekens et al., Haematologica 2016, \([t(8;21), \text{n}=94]\)

- MRD-negativity at end of treatment in BM impacts clinical outcome – AML Study Group Agrawal et al., ASH meeting 2016, abstract #1207 \([t(8;21), \text{n}=120]\)

- Transcript level reduction (3-log) before consolidation II influences relapse risk – French Intergroup. Jourdan et al., Blood 2013, \([t(8;21), \text{n}=96; \text{inv}(16), \text{n}=102]\)

- Distinct absolute transcript levels and log reduction after induction I and during follow-up correlate with clinically relevant endpoints – UK MRC15. Yin et al., Blood 2012, \([t(8;21), \text{n}=163; \text{inv}(16), \text{n}=115]\)

- Minimal residual disease monitoring and mutational landscape in AML with RUNX1-RUNX1T1: a study on 134 patients. Höllein et al., Leukemia 2018
Prognostic impact of *RUNX1/RUNX1T1* MRD in AML

Hong-Hu Zhu et al. Blood 2013; 121: 4056-4062

- Prospective study on 116 newly diagnosed pts with t(8;21)-positive AML achieving CR after 2 induction cycles
- MRD directed risk stratification treatment in pts in 1.CR

Study design for MRD monitoring

- **Material:** BM samples were used for RQ-PCR analysis
- **Time points:**
 - at diagnosis
 - after induction therapy
 - after each consolidation cycle
 - 3-monthly for 1 year
- **Major molecular remission (MMR):** > 3 log reduction (<0.4%) in *RUNX1/RUNX1T1* transcripts compared to pretreatment sample
- **Loss of MMR:** *RUNX1/RUNX1T1* transcript levels > 0.4% in MMR pts
Study design

MRD directed risk stratification treatment in t(8;21)-positive AML in 1.CR: The AML05 multicenter trial

Prognostic impact of \textit{RUNX1/RUNX1T1} MRD in AML

Hong-Hu Zhu et al. Blood 2013; 121: 4056-4062
Prognostic impact of \textit{RUNX1/RUNX1T1} MRD status in AML

MRD directed risk stratification treatment in t(8;21)-positive AML in 1.CR: The AML05 multicenter trial

Hong-Hu Zhu et al. Blood 2013; 121: 4056-4062
Phase III study of chemotherapy with or without Dasatinib in CBF AML: AMLSG 21-13 Study

Induction
- Daunorubicin
- Cytarabine

Consolidation x3
- High-Dose Cytarabine*

Maintenance
- 1-monthly PB for 6 months; 3–monthly PB and BM

CBF mutation screening within 48 hours

MRD assessment by RQ-PCR

Salvage / transplantation if MRD persists or recurs

All adult patients eligible for intensive therapy, no upper age limit

* Cytarabine: 18-60yrs: 3g/m², q12hr, d1-3; >60yrs: 1g/m², q12hr, d1-3

ClinicalTrials.gov NCT02013648
Kinetics of *RUNX1/RUNXT1* transcript levels: AMLSG 11-08 cohort versus historical control - t(8;21)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>AMLSG 11-08</th>
<th>Historical Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle I</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Cycle II</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Cycle III</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Cycle IV</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Cycle V</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Median 1861 680 62 26 28 12 32 0 8 0 21 0 17 0 0 0 0 0

Negative, n 1 1 3 7 9 9 5 12 12 11 9 8 11 9 9 11 10 10

Negative % 3.0 3.6 8.8 28.0 37.5 15.2 60.0 46.2 35.3 66.7 46.7 47.8 81.2 56.3 100 62.5 100

p-values
p = 0.55
p = 0.24
p = 0.66
p = 0.02
p = 0.28
p = 0.26
p = 0.02
p = 0.27
p = 0.52

Paschka P et al., Leukemia 2018
Prognostic impact of MRD in NPM1 mutated AML

- MRD levels assessed by NPM1 mutation-specific RQ-PCR provide important prognostic information in AML. Schnittger et al., Blood 2009;114:2220-31; [n=252]

- MRD monitoring in NPM1 mutated AML: a study from the German-Austrian Acute Myeloid Leukemia Study Group. Krönke et al., JCO 2011;19:2709-2716; [n=245]

- The level of residual disease based on mutant NPM1 is an independent prognostic factor for relapse and survival in AML. Shayegi et al., Blood 2013;122:83-92; [n=155]

- MRD assessed by WT1 and NPM1 transcript levels identifies distinct outcomes in AML patients and is influenced by gemtuzumab ozogamicin. Lambert et al., Oncotarget 2014; 5:6280-8; [n=77]

Prognostic impact of MRD in \textit{NPM1} mutated AML

- Retrospective study on 437 \textit{NPM1} mutated AML pts (pediatric and adults, NCRI AML17 trial)

- 2569 BM/PB (902/1667) samples were analyzed by RQ-PCR after each treatment cycle and during follow-up; sensitivity 10^{-5}

- MRD positivity in PB after 2 cycles of therapy was significantly associated with inferior OS (24\% vs 73\%) and higher risk of relapse (82\% vs 30\%) after 3 years

- In multivariate analysis MRD positivity in PB was significantly associated with death (HR 4.38) and relapse (HR 5.09)

Prognostic impact of MRD in *NPM1* mutated AML

Impact of concurrent *FLT3*-ITD mutation

Relapse in pts without *FLT3*-ITD

Relapse in pts with *FLT3*-ITD

Prognostic impact of MRD in \textit{NPM1} mutated AML

Impact of concurrent $DNMT3A^\text{mut}$

Relapse in pts without $DNMT3A^\text{mut}$
Relapse in pts with $DNMT3A^\text{mut}$

Prognostic impact of MRD in *NPM1* mutated AML
- A Study of the German-Austrian AML Study Group (AMLSG) -

- Retrospective/since 2008 prospective study on 611 *NPM1*mut adult AML pts enrolled in one of 4 AMLSG treatment trials; median follow-up for all patients/trials: 3.2 years

- 6339 BM/PB (3527/2812) samples were analyzed by RQ-PCR after each treatment cycle and during follow-up; sensitivity 10-5 to 10-6

- Achievement of RQ-PCR negativity in the BM after 2 treatment cycles was significantly associated with superior OS (at 4 yrs: 82% vs 63%) and lower CIR (at 4 yrs: 15% vs 40%) compared to RQ-PCR positive pts

- Multivariate analysis: *NPM1*mut transcript levels (continuous variable) in BM were significantly associated with relapse (HR 1.87) and OS (HR 1.44)

Könke et al., JCO 2011;19:2709-2716; Kapp-Schwoerer S et al., ASH meeting 2017, #183
Impact of concurrent *FLT3-ITD/DNMT3A* mutations on kinetics of *NPM1*^{mut} transcript levels

Kapp-Schwoerer S et al., ASH meeting 2017, #183
Achievement of RQ-PCR negativity in $NPM1^{\text{mut}}$ patients according to $FLT3$-ITD/$DNMT3A$ mutation status in BM

After 2 cycles of therapy

<table>
<thead>
<tr>
<th>Genotype</th>
<th>$NPM1^{\text{mut}}$</th>
<th>$NPM1^{\text{mut}}$</th>
<th>$NPM1^{\text{mut}}$</th>
<th>$NPM1^{\text{mut}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLT3-ITD WT</td>
<td>FLT3-ITD $^{\text{mut}}$</td>
<td>FLT3-ITD WT</td>
<td>FLT3-ITD $^{\text{mut}}$</td>
</tr>
<tr>
<td></td>
<td>DNMT3A WT</td>
<td>DNMT3A $^{\text{mut}}$</td>
<td>DNMT3A WT</td>
<td>DNMT3A $^{\text{mut}}$</td>
</tr>
<tr>
<td>RQ-PCR negative (n)</td>
<td>30 (26%)</td>
<td>14 (25%)</td>
<td>10 (8%)</td>
<td>6 (8%)</td>
</tr>
<tr>
<td>RQ-PCR positive (n)</td>
<td>84 (74%)</td>
<td>41 (75%)</td>
<td>110 (92%)</td>
<td>65 (92%)</td>
</tr>
<tr>
<td>% negative</td>
<td>26%</td>
<td>25%</td>
<td>8%</td>
<td>8%</td>
</tr>
</tbody>
</table>

$P=0.0002$

Kapp-Schwoerer S et al., unpublished data
Impact of MRD-negativity in BM after two cycles of intensive treatment on type of post-remission therapy

Overall survival

Cumulative incidence of relapse

P<0.00001

HIDAC, n=43

AlloSCT, n=19

P=0.18

HIDAC, n=41

AlloSCT, n=17

Kapp-Schwoerer S et al., EHA 2018, PS973
Phase III Study of Chemotherapy in Combination with ATRA with or without Gemtuzumab Ozogamicin (GO) in $NPM1^{\text{mut}}$ AML patients

[AMLSG 09-09 Trial]

All adult patients eligible for intensive therapy, no upper age limit

* Cytarabine: 18-60yrs: 3g/m², q12hr, d1-3; >60yrs: 1g/m², q12hr, d1-3

PI: H. Döhner; supported by Else Kröner-Fresenius-Foundation & Pfizer
Impact of GO on kinetics of $NPM1^{\text{mut}}$ transcript levels

Kapp-Schwoerer S et al., oral presentation ASH 2018, #991
Impact of GO on MRD at the end of treatment

BM samples (n=288); all pts in CR

Achievement of RQ-PCR negativity in BM

<table>
<thead>
<tr>
<th></th>
<th>Arm A</th>
<th>Arm B</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQ-PCR neg; n (%)</td>
<td>63/154 (41%)</td>
<td>74/134 (55%)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Kapp-Schwoerer S et al., oral presentation ASH 2018, #991
How to implement MRD detection in clinical AML trials

- Evaluation of the prognostic significance of MRD levels in adult AML pts treated in the randomized gemtuzumab ozogamicin (GO) ALFA-0701 trial
- 79 pts with monitorable $NPM1^{\text{mut}}$ (GO-arm n=42, control arm n=37)
- BM/PB samples at diagnosis, after induction therapy and after each consolidation course
- 61 pts achieved CR and were subsequently tested for MRD (GO-arm n=33, control arm n=28)
- cDNA based RQ-PCR assay
- MRD positivity: > 0.1% in BM sample
How to implement MRD detection in clinical AML trials

CIR after double induction

CIR at the end of treatment

Effect of GO on MRD

CIR after double induction

CIR at the end of treatment

Effect of GO on MRD

p=0.006

p=0.028
MRD monitoring by next generation sequencing (NGS)

- 482 AML pts (18 to 65 years) treated with 1 to 2 cycles of standard induction chemotherapy followed by consolidation in HOVON-SAKK clinical trials
- NGS panel of 54 genes (Illumina) at diagnosis and in BM in morphological CR after completion of induction therapy
- 430/482 (89.2%) pts had somatic driver mutations at diagnosis (2.9 mutations per case)
- 51.4% of pts had persisting mutations in BM in morphological CR at highly variable variant allele frequencies (VAF 0.02-47%), predominantly in *DNMT3A* (78.7%), *TET2* (54.2%) and *ASXL1* (51.6%) >> DTA mutations

Mojca Jongen-Lavrencic et al., N Engl J Med; 2018
• *DTA* mutations were not associated with the incidence of relapse at any VAF cut-off >> stage of clonal hematopoiesis rather than impending relapse

• After exclusion of persistent DTA mutations, NGS MRD was significantly associated with higher relapse rate (55.4% vs 31.9%), lower RFS (36.6% vs 58.1%) and inferior OS (41.9% vs 66.1%) than no detection

• Persistence on non-DTA mutations revealed as an independent prognostic variable in multivariate analysis for relapse (HR 1.89), RFS (HR 1.64) and OS (HR 1.64)
Relapse incidence of residual leukemia:

NGS MRD and multiparameter flow MRD both were significantly associated with relapse in AML.

Multivariate analysis: the combined use of the two assays conferred independent prognostic value with respect to RFS and OS.
MRD monitoring by next generation sequencing (NGS)

• 131 AML pts (39 to 55 years) with intensive induction therapy and achievement of morphologic CR at day 30

• Detection of mutations in paired BM samples (Dx/CR) by targeted capture deep sequencing (coverage at DX 257 x/ in CR 575 x)

• Definition of three levels of mutation clearance (MC) of residual mutations in CR on the basis of VAF:
 • MC2.5: VAF < 2.5%
 • MC1.0: VAF < 1%
 • CMC: complete mutation clearance

• Correlation of mutation clearance with clinical endpoints (EFS, OS, CIR)

Morita K et al., J Clin Oncol; 2018
MRD monitoring by next generation sequencing (NGS)

Morita K et al., J Clin Oncol; 2018
MRD monitoring by next generation sequencing (NGS)

Prognostic impact of allogeneic stem cell transplantation in 1.CR

Morita K et al., J Clin Oncol; 2018
ELN recommendations for MRD assessment

- Suitable markers for MRD: \textit{NPM1}, \textit{RUNX1-RUNXT1}, \textit{CBFB-MYH11}, \textit{PML-RARA}; \textit{DNMT3A}, \textit{ASXL1} or \textit{TET2} are NOT usable

- Relevant MRD time points: after 2 treatment cycles, at the end of treatment (EOT); 3 monthly for 24 months after EOT

- Definitions for molecular remission, molecular progression and molecular relapse

- Molecular and/or MFC MRD should be integrated into all clinical trials at all times of evaluation of response, using the technical ELN guidelines

\cite{Schuurhuis2018}
The U.S. Food and Drug Administration (FDA) recently issued a draft guidance titled

”Hematologic Malignancies: Regulatory Considerations for Use of Minimal Residual Disease (MRD) in Development of Drug an Biologic Products for Treatment”
Midostaurin vs Gilteritinib plus chemotherapy for AML with FLT3 mutation – HOVON 156 / AMLSG 28-18

Induction I	Induction II	Consolidation	1-yr Maintenance
Dauno Cytarabine Midostaurin | Dauno Cytarabine Midostaurin | IDAC Midostaurin | Midostaurin
Dauno IDAC Midostaurin | Dauno IDAC Midostaurin | IDAC Midostaurin | Gilteritinib
Dauno Gilteritinib | Dauno Gilteritinib | IDAC Gilteritinib | Gilteritinib
Dauno IDAC Gilteritinib | Dauno IDAC Gilteritinib | ME / auto HCT Gilteritinib | ME / auto HCT Gilteritinib

• NGS gene panel
• MFC (LAIP)

MRD assessment

• Assessment of measurable residual disease (MRD) by RT-qPCR (NPM1, CBF), next-generation sequencing (NGS), and multiparameter flow cytometry (MFC) of leukemia-associated immunophenotypes (LAIP)
• Centralized diagnostic assessment (Ulm, Rotterdam, Amsterdam) – harmonized assays
• CR_{MRD} as secondary endpoint

HCT, hematopoietic cell transplantation; IDAC, intermediate-dose cytarabine; ME, mitoxantrone, etoposide

≥18 yrs AML with FLT3 mutation

n=768
Summary and Conclusions I

• Most of the studies were performed retrospectively >>> patient selection according to the presence of a molecular marker, the availability of a BM/PB sample at defined time points, and the CR status (1. CR)

• Achievement of MRD/RQ-PCR-negativity was evaluated after 2 cycles of therapy or at the end of treatment in patients in 1.CR

• Here, achievement of MRD-negativity or significant reduction of transcript levels /mutations by RQ-PCR/NGS was associated with reduced relapse risk and improved survival

• However, a significant proportion of patients do not achieve MRD-negativity in BM at this early time point in particular when highly sensitive assays are used
Summary and Conclusions II

- MRD kinetics allow monitoring of treatment effects

- NGS-based MRD monitoring has been shown to be useful in ~ 90% of AML patients; further development of the techniques is ongoing; sensitivities are still low and data analysis is challenging

- Standardization/harmonization guidelines for MRD

- MRD monitoring (molecular / MCF) should be included in all clinical trials